Technische Information

Styropor[®]

120

BASF Plastics key to your success

48307 März 2001

® = reg. Marke der BASF Aktiengesellschaft

3 Eigenschaften/ Prüfungen

Das Verhalten von Schaumstoffen gegen chemische Substanzen

Die Widerstandsfähigkeit von Schaumstoffen aus Styropor gegen chemische Substanzen entspricht der von Formteilen aus Polystyrol. Wegen der durch die Zellstruktur bedingten vergrößerten Oberfläche erfolgen Schädigungen jedoch schneller oder wirken sich stärker aus als bei dem kompakten Grundstoff Polystyrol. Schaumstoffe mit niedriger Rohdichte werden daher auch rascher bzw. stärker als solche mit höherer Rohdichte angegriffen.

Die Kenntnis des Verhaltens von Schaumstoffen aus Styropor bei Kontakt mit den in der Praxis (Bauwesen, Verpackung) vorkommenden chemischen Substanzen ist sehr wichtig, um Fehler bei der Anwendung zu vermeiden.

Prüfung

Die Beständigkeitsprüfung wird in Anlehnung an DIN 53428 "Prüfung von Schaumstoffen, Bestimmung des Verhaltens gegen Flüssigkeiten, Dämpfe, Gase und feste Stoffe" durchgeführt. Nach dieser Norm werden 5 Schaumstoffwürfel ohne Schäumhaut von 5 cm Kantenlänge in dem Prüfmedium gelagert und nach definierter Lagerzeit dabei aufgetretene Änderungen des Probekörpers - z.B. der Masse und Maßänderungen – bestimmt. Die Lagerzeiten in den flüssigen Prüfmedien betrugen hierbei 72 Stunden, in Gasen 24 Stunden und in verflüssigten Gasen mindestens 3 Stunden.

Bei der Lagerung in verflüssigten Gasen lagen die Temperaturen jeweils am oder wenig unter dem Siedepunkt der betreffenden Substanz, in den anderen Prüfmedien bei Raumtemperatur. Gemäß DIN 53428 werden für visuelle Auswertungen Bewertungskriterien von 0 = nicht verändert, bis 5 = sehr stark verändert, vorgeschlagen. In Anlehnung hieran sind zur vereinfachten Übersicht in der Tabelle folgende Bewertungskriterien aufgeführt:

- + = nicht verändert (≜ 0)= beständig
- +- = gering verändert (≜ 2) = bedingt beständig (geringe Maßveränderungen)
- = sehr stark verändert (≜ 5)= unbeständig

Wenn Schaumstoffe aus Styropor mit Substanzen unbekannter Zusammensetzung in Kontakt kommen, z.B. mit Lacken oder Klebstoffen, die schädigende Lösemittel enthalten können, dann vergewissere man sich vorab durch einen Versuch unter praxisnahen Bedingungen, dass der Schaumstoff nicht angegriffen wird. Wenn man die Prüfung bei höherer Temperatur als 20 °C, z.B. bei 50 °C durchführt, kann sie erheblich abgekürzt werden. Um die Prüfbedingungen zu verschärfen und eine deutlichere Aussage zu erhalten, können auch Schaumstoffe mit wesentlich niedrigeren Rohdichten als für die Anwendung vorgesehen geprüft werden.

Nachfolgend ist das Verhalten von Schaumstoffen aus Styropor gegenüber den wichtigsten chemischen Substanzen in Form einer Tabelle dargestellt.

Substanz	Schaumstoff Styropo		Substanz	Schaumstoff Styropo		Substanz	Schaumsto Styrop	
Wasser		+	Verflüssigte	Gase:		Anorganisch	e Baustoffe:	
Meerwasser		+	a) anorganisch		Anhydrit +			
			Ámmoniak		+	Gips		+
Laugen:			Edelgase		+	Kalk		+
Ammoniakwas	sser	+		plosionsgefahr)	+	Sand		+
Bleichlaugen (I		•	Schwefeldioxi		_	Zement		+
Wasserstoff		+	Stickstoff	u .	+	201110111		
Kalilauge	Superoxia)	+	Wasserstoff		+	Organische I	Bauetoffe:	
Kalkwasser			VVasserston		т	Bitumen	Jaustone.	+
		+	b) organicab			Kaltbitumen u	and Ditumon	+
Natronlauge	~	+	b) organisch					
Seifenlösungen		+	Methan		+	spachtelma		
.,			Ethan		+	wässriger E		+
Verdünnte Sä			Ethen		_	Kaltbitumen u		
Ameisensäure		+	Ethenoxid		_	spachtelma		
Essigsäure, 50		+	Ethin		_	Lösemittelk		
Flusssäure, 49		+	Propan		_	(aromatenfi	rei)	_
Flusssäure, 40		+	Propen		_			
Phosphorsäure	e, 7 %	+	Propenoxid		_	Aromaten:		
Phosphorsäure	e, 50%	+	Butan		_	Benzol		_
Salpetersäure,		+	Buten		_	Cumol		_
Salpetersäure,		+	Butadien		_	Ethylbenzol		_
Salzsäure, 7%		+	Erdgas		+	Phenol, wässi	r. Lsg. 1%	+
Salzsäure, 189		+			•	Phenol, wässi		
Schwefelsäure		+	Aliphatische			Styrol	. Log. 00 /0	_
Schwefelsäure		+	Kohlenwass	aretoffa:		Toluol		_
Ochwordisadic	,, 00 /0		Cyclohexan	or storie.	_	Xylol		_
Konzentrierte	Cäuranı			off Hoizel El	_	Ayloi		_
			Diesel-Kraftst	oii, Heizoi EL	_	D:f		
Ameisensäure		+	Heptan		_	Dämpfe von:		
Essigsäure, 96		_	Hexan		_	Kampfer		_
Propionsäure,		_	Paraffinöl		+-	Naphtalin		_
Salpetersäure,		+	Testbenzin 55		_			
Salzsäure, 36°		+	Testbenzin 15	5-185 °C	_	Im Produkteo	rtiment befindet	eich
Schwefelsäure	e, 98 %	+	Vaseline		+		FH 106 ein Prod	
			Vergaser-Kraf	tstoff mit			Schaumstoffe r	
Rauchende S	äuren:		Benzol (No	rmal u. Super)	_			
Salpetersäure		_	,	' '			per Schaumstoff	
Schwefelsäure)	_	Alkohole:				Styropor Marker	
			Methanol		+-		tändigkeit geger	
Anhydride:			Ethanol		+-		hlenwasserstoff	-
Essigsäureanh	vdrid	_	Ethylenglykol		+		sen. Die Eignung	
Kohlendioxid,		+	Diethylenglyk	ما	+		für bestimmte A	
Schwefeltrioxid		_	iso-Propanol	JI			ollte in jedem Ei	nzel-
Scriwerennoxi	u	_	Butanol		+	fall überprüft	werden.	
0 - 1 1 0"					+-	·		
Schwache Sä	iuren:		Cyclohexanol		+	Zur Beachtu	ng	
Humussäure		+	Glycerin		+			
Kohlensäure		+	Kokosfettalko	hol	+		in dieser Drucks	
Milchsäure		+					ınseren derzeitiç	
Weinsäure		+	Amine:				und Erfahrungen	
Zitronensäure		+	Anilin		_	befreien den \	Verarbeiter wege	en der
			Diethylamin		_	Fülle mögliche	er Einflüsse bei I	Bear-
Gase:			Ethylamin		+		nwendung unse	
a) anorganisch	١		Triethylamin		_		it von eigenen P	
Ammoniak		_					uchen. Eine rech	
Brom		_	Sonstige org	anische			usicherung bes	
Chlor		_	Substanzen:	amoono			ften oder der Ei	
Schwefeldioxid	4	_	Aceton		_		kreten Einsatzzw	
OCHWEIGIGIOXIC	J	_	Acetonitril		_		eren Angaben n	
h) organiach								
b) organisch			Acrylnitril		_		rden. Etwaige S	
Butadien		_	Dimethylforma	arma	_		bestehende Ges	
Butan		_	Ester		_		ungen sind vom	
Buten		_	Ether		_		serer Produkte	
Erdgas		+		nwasserstoffe	_	eigener Veran	twortung zu bea	chten.
Ethan		+	Ketone		_			
Ethen		+	Lackverdünne	er	_			
Ethin		+	Olivenöl		+	BASF Aktieng	esellschaft	
Methan		+	Tetrahydrofura	an	_	67056 Ludwig		
Propan			rotrattyurotur	A1 1	_	o, coo Laawig	201101011	
		+						
Propen Propensyld		+						
Propenoxid		_				RAS		